Order For Custom Writing, Similar Answers & Assignment Help Services

Fill the order form details in 3 easy steps - paper's instructions guide.

Posted: June 29th, 2022

CVEN3501 – WATER RESOURCES ENGINEERING ASSIGNMENT

CVEN3501 – WATER RESOURCES ENGINEERING
ASSIGNMENT 2 (Groundwater) – 35 Marks – 15% of course
Groundwater Modelling of Drawdown from a Pumping Bore
IMPORTANT NOTES:
x This assignment is to be carried out individually, and the assignment answers are to be submitted online on Moodle by each student;
x Each student must find their unique set of input values from the spread sheet on
UNSW’s Moodle (CVEN3501 Assignment 2 individual values 2022.xlsx); x For calculated (numerical) answers, round your values to 3 decimal digits; x Please note that every set of dimensions and values is unique! There is no point in copying your mate’s results;
x Complete the student declaration form on Moodle. Until this is marked complete you will not be able to access the submission links;
x You will only have one try for entering your results in Moodle. Therefore, please make sure that you have done all your calculations and rechecked that they are correct before you enter your results;
x Penalty for late submission is 5% per day.
Background
We often need to include the impact of pumping at a known rate in groundwater models. In this assignment you will build a simplified 2D model to assess the impacts of pumping. The following differential equation describes 2D flow in a confined aquifer with a source or sink term R, here at a pumping node:
(1)
Here, R 0 for injection into the model, and R 0 for abstraction from the model. Refer to your course notes for how to solve this equation using the finite difference approach in two dimensions.
You will need to consider how to modify Equation 1 to represent injection/abstraction from a uniform and isotropic aquifer using the finite difference method.
?? HINT: Consider the dimensions of the term R in Equation 1, they are not Pumping at a specified rate has an impact on groundwater models, and we must typically account for this in our calculations. As part of this assignment, you will create a simple 2D model in order to evaluate the effects of pumping. At a pumping node, the following differential equation explains 2D flow in a constrained aquifer with a source or sink term R, as shown in the figure:
(1)
R 0 is used for injection into the model, while R 0 is used for abstraction from the model in this case. Please refer to your course notes for information on how to solve this equation in two dimensions using the finite difference approach.
To model injection and extraction from a uniform and isotropic aquifer using the finite difference approach, you will need to explore how to adapt Equation  Assessment Essay Help Asutralia.1 to account for this.
?? HINT: Consider the dimensions of the term R in Equation 1, which are not the same as in Equation 2.
?

The Problem
The objective of the assignment is to use the spreadsheet package Microsoft Excel to investigate the effect of changing boundary conditions on a simple rectangular isotropic and homogeneous confined aquifer, firstly without pumping and then including a groundwater pumping bore abstracting or injecting water. The assignment is based on the analysis of Frank and Reilly (1987).
You should set up a model for your unique aquifer. Figure 1 is an example and does not necessarily match your aquifer dimensions. Your aquifer has an area X m wide (AB and CD) by Y m long (BC and DA). Use a finite difference discretisation where ?x = ?y = 100 m. Your model will then be X’ nodes wide in the x-direction along boundaries AB and CD and Y’ nodes long in the y-direction along boundaries BC and DA.
In the example, the aquifer is X = 800 m wide by Y = 1500 m long and ?x = ?y = 100 m. This model therefore has X’ = 9 nodes in the x-direction (from node 0 to node 8 along boundaries
AB and CD) and Y’ = 16 nodes in the y-direction (from node 0 to node 15 along boundaries BC and DA). See Figure 1.
Each student will have a unique set of data for the transmissivity (T [m2/day]), Pumping rate (Q [m3/day]), initial head conditions (h [m]), and an x-y coordinate pair representing the bore location. Find your data in the excel sheet on Moodle (CVEN3501 Assignment 2 individual values 2022.xlsx). Figure 1 shows how the bore location x-y coordinate corresponds to a node in the numerical scheme.
For the spread sheet to successfully iterate, circular references should be enabled. In Microsoft Excel 2010+ this is done under the menus: ”File” – ”Options” – ”Formulas”: Here you need to tick ”Enable iterative calculation”, set ”Maximum iterations” to 30,000 and ”Maximum change” to 0.0001.
Figure 1 Example layout of nodes and pumping bore locations
Model the following two sets of aquifer conditions:
Model 1: The problem domain (aquifer) is surrounded by Dirichlet (fixed head) boundary conditions. Use a linear decrease in head from h m to 0 m along BC and AD, a fixed head of 0 m along boundary CD, and a fixed head of h m along boundary AB.
Model 2: The problem domain (aquifer) is surrounded by a mix of Dirichlet and Neumann (no flow) boundary conditions. Use a no-flow boundary condition (with ?h/?x = 0) across BC and AD, a fixed head of 0 m along boundary CD, and a fixed head of h m along boundary AB.
Provide the answers for the following questions in Moodle:
1. Calculate the flow though the aquifer for Model 1 without any abstraction. Hint: Check that the flow calculated by the spreadsheet is correct using Darcy’s Law [2 marks].
2. Calculate the flow though the aquifer for Model 2 without any abstraction. Hint: Check that the flow calculated by the spreadsheet is correct using Darcy’s Law [2 marks].
3. Using your unique values for the model dimensions, of the transmissivity, the bore node location and the abstraction or injection rate, calculate the water level (relative
to the datum) at the given node location and the flows across each of the 4 boundaries for Model 1 (Dirichlet conditions). Note that abstraction (Q) is negative (by convention) for water leaving the aquifer. Calculate your flows over the boundaries as positive if into the aquifer and negative if out of the aquifer. Report the following: [10 marks]
a) Head at pumping node [m]
b) Flow through boundary AB [m3/d]
c) Flow through boundary DC [m3/d]
d) Flow through boundary AD [m3/d]
e) Flow through boundary BC [m3/d]
4. Again, using your unique values of the transmissivity, the bore node location and the pumping (or injection) rate given on the assignment sheet, calculate the water level (relative to the datum) at the given node location and the flows across each of the 4 boundaries for Model 2 (Dirichlet and Neumann conditions). Use the same convention for the direction of flow as in the preceding question. Report the following: [10 marks]
a) Head at pumping node [m]
b) Flow through boundary AB [m3/d]
c) Flow through boundary DC [m3/d]
d) Flow through boundary AD [m3/d]
e) Flow through boundary BC [m3/d]
5. For Model 2, what is the theoretically expected flow over boundary BC? [1 mark]
HINT: For Questions 3 and 4, please note that the transmissivity is given in [m2/day] and the abstraction/injection rate is in [m3/day].
Using your excel models, course notes, and the reference to Frank and Reilly (1987), answer the following multi-choice questions in Moodle [1 mark/question].
Please NOTE: the order (numeration) of the possible answers may be different in the
Moodle submission link.
6. If the pumping rate doubles, what will happen to the drawdown at your pumping node (absolute magnitude of change)?
a) Drawdown doubles, for both models
b) Drawdown increases for model 1, and doubles for model 2
c) Drawdown doubles for model 1, and increases for model 2
d) Drawdown increases, for both models
e) No change in drawdown for either model
7. Based on your value for transmissivity, and assuming a uniform aquifer thickness of 5 m, this model most likely represents
a) An aquitard
b) A sand aquifer
c) A sandstone aquifer
d) A gravel aquifer
e) A fractured basalt aquifer
8. If you halve the discretisation of your model, i.e., from ?x = ?y = 100 m to ?x = ?y = 50 m, what will happen to the model truncation error?
a) Truncation error decreases by a factor of 2 (halves)
b) Truncation error decreases by more than a factor of 2
c) Truncation error increases by a factor of 2 (doubles)
d) Truncation error increases by less than a factor of 2
9. What best describes this model?
a) Anisotropic, homogenous, equilibrium, confined
b) Equilibrium, unconfined, heterogenous, isotropic
c) Homogenous, transient, isotropic, confined,
d) Equilibrium, confined, homogenous, isotropic
e) Confined, transient, anisotropic, homogenous
10. Can this model be used to simulate temporal changes?
a) Yes, both
b) Yes, but only model 1
c) Yes, but only model 2
d) No, neither model
11. Can this model be used to model vertical flows?
a) Yes, both
b) Yes, but only model 1
c) Yes, but only model 2
d) No, neither model
12. Model boundary conditions represent the real boundaries of your groundwater system. Which of the following features would you model with a Dirichlet (fixed head) boundary?
a) The water table
b) A large lake
c) A non-conductive fault zone
d) A large granite outcrop
13. Model boundary conditions represent the real boundaries of your groundwater system.
Which of the following features would you model with a Neumann (no flow) boundary?
a) A large lake
b) A large granite outcrop
c) A conductive fault zone
d) The water table
14. Based on your answers to all previous questions, which is the most important parameter for your models (i.e., what are your models most sensitive to)?
a) Pumping rate
b) Hydraulic conductivity
c) The choice of boundary conditions
d) The model software
e) The discretisation scheme
15. If you built an unconfined (water table) model, would the drawdown at your pumping well be smaller or larger (absolute magnitude of change)?
a) Smaller, for both models
b) Smaller for model 1, but larger for model 2
c) Larger for model 1, but smaller for model 2
d) Larger, for both models
e) The same, for both models
Reference:
Frank, C. L. and Reilly, T. E. (1987). The effects of boundary conditions on the steadystate response of three hypothetical groundwater systems – results and implications for numerical experiments. Water- Supply Paper 2315, US Geological Survey.

Order | Check Discount

Tags: apps that write essays for you free, assignment writing services in usa, bes, best dissertation writing services, best essay writing service

Assignment Help For You!

Special Offer! Get 15-30% Off on Each Order!

Why Seek Our Custom Writing Services

Every Student Wants Quality and That’s What We Deliver

Graduate Essay Writers

Only the most qualified writers are selected to be a part of our research and editorial team, with each possessing specialized knowledge in specific subjects and a background in academic writing.

Affordable Prices

Our prices strike the perfect balance between affordability and quality. We offer student-friendly rates that are competitive within the industry, without compromising on our high writing service standards.

100% Plagiarism-Free

No AI/chatgpt use. We write all our papers from scratch thus 0% similarity index. We scan every final draft before submitting it to a customer.

How it works

When you decide to place an order with Nursing.StudyBay, here is what happens:

Fill the Order Form

You will complete our order form, filling in all of the fields and giving us as much guidelines - instruction details as possible.

Assignment of Writer

We assess your order and pair it with a skilled writer who possesses the specific qualifications for that subject. They then start the research/writing from scratch.

Order in Progress and Delivery

You and the assigned expert writer have direct communication throughout the process. Upon receiving the final draft, you can either approve it or request revisions.

Giving us Feedback (and other options)

We seek to understand your experience. You can also review testimonials from other clients, from where you can select your preferred professional writer to assist with your homework assignments.

Expert paper writers are just a few clicks away

Place an order in 3 easy steps. Takes less than 5 mins.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00