Graduate Essay Writers
Only the most qualified writers are selected to be a part of our research and editorial team, with each possessing specialized knowledge in specific subjects and a background in academic writing.
Fill the order form details in 3 easy steps - paper's instructions guide.
Posted: January 26th, 2023
Mgt425
Discussion: 7.1 Learning Outcomes:
Find some structured ways of dealing with complex managerial decision problems.
Explain simple decision models and management science ideas that provide powerful and (often surprising) qualitative insight about large spectrum of managerial problems.
Demonstrate the tools for deciding when and which decision models to use for specific problems.
Build an understanding of the kind of problems that is tackled using spreadsheet modeling and decision analysis.
7.2 Action Required:
Read the following chapter of your Textbook.
Chapter 5: Data Exploration and Visualization
7.3 Test your Knowledge (Question):
Explain various types of Categorical and Numerical Data with examples.
Discuss the Data Exploration process.
6.4 Instructions
Answer both questions in test your knowledge section.
Post your answer in the discussion board using the discussion link below (Week 6: Interactive learning Discussion)
—>
Categorical data refers to data that can be divided into groups or categories, rather than numerical values. Examples of categorical data include:
Gender (male or female)
Marital status (married, single, divorced, etc.)
Favorite color (red, blue, green, etc.)
Numerical data refers to data that can be quantified or measured using numerical values. Examples of numerical data include:
Age (18, 25, 30, etc.)
Income ( $50,000, $75,000, $100,000, etc.)
Weight (150lbs, 200lbs, etc.)
Data exploration is the process of analyzing and understanding the data in order to identify patterns, relationships, and outliers. The process typically includes a variety of techniques such as:
Descriptive statistics: calculating measures such as mean, median, and standard deviation to summarize the data.
Data visualization: using charts, graphs, and plots to visually display the data and identify patterns or trends.
Data cleaning: identifying and correcting errors or inconsistencies in the data.
Data transformation: transforming the data into a format that is more suitable for analysis.
Data exploration is an important step in the data analysis process as it allows you to gain insights into the data and identify any potential issues that may need to be addressed before building a model or making decisions.
Every Student Wants Quality and That’s What We Deliver
Only the most qualified writers are selected to be a part of our research and editorial team, with each possessing specialized knowledge in specific subjects and a background in academic writing.
Our prices strike the perfect balance between affordability and quality. We offer student-friendly rates that are competitive within the industry, without compromising on our high writing service standards.
No AI/chatgpt use. We write all our papers from scratch thus 0% similarity index. We scan every final draft before submitting it to a customer.
When you decide to place an order with Nursing.StudyBay, here is what happens:
Place an order in 3 easy steps. Takes less than 5 mins.